High-Impact Pedagogies that Motivate and Retain Students in STEM

Dr. Eliza J. Reilly
Dr. Oludare Owolabi
This presentation is being recorded. The recording and slides will be available in the coming week at

https://aaas-iuse.org

Please note: The discussion break-out groups following the presentations will NOT be recorded.
Closed Captioning:

To download the transcript or view the full transcript, please click the “CC” button at the bottom of your screen.
The AAAS-IUSE initiative supports faculty, students, and the greater undergraduate STEM education community by disseminating research and knowledge about STEM teaching, learning, equity and institutional transformation.

Check out our website to learn more and view: https://aaas-iuse.org

- Blog
- Workshops
- Summer Labs On-Demand
- Resources
- Lessons Learned During COVID
- NSF IUSE Proposal Preparation Toolkit
High-Impact Pedagogies that Motivate and Retain Students in STEM

Dr. Eliza J. Reilly
Dr. Oludare Owolabi

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1937267. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.
A High Impact Strategy for Advancing both STEM Learning and the Civic Mission of Undergraduate Education

By Eliza J. Reilly, Executive Director of the National Center for Science and Civic Engagement

eliza.reilly@ncsce.net SENCER.net NCSCE.net
Eleven practices have been identified as high impact practices:

- First-Year Experiences.
- Common Intellectual Experiences.
- Learning Communities.
- Writing-Intensive Courses.
- Collaborative Assignments and Projects.
- Undergraduate Research.
- Diversity/Global Learning.
- Service Learning, Community-Based Learning.
WHILE HIP’S FOCUS ON THE “HOW” OF STUDENT LEARNING, SENCER STARTED WITH THE “WHY” (WHY DO I NEED TO TAKE THIS COURSE?)
A CONFESSION:

SENCER ISN’T (TECHNICALLY) A HIGH IMPACT PRACTICE IN THE USUAL SENSE
THE CONTEXT OF THE LATE 90’S

SENCER WAS DESIGNED TO ADDRESS TWO PROBLEMS IDENTIFIED BY DEANS AND COLLEGE PRESIDENTS IN 1999

▸ Attracting and Retaining Students to STEM courses.

▸ Non STEM majors never elected more STEM beyond required GEN ED courses (while STEM students frequently elected SS and HUM courses)

▸ STEM courses and majors were not retaining PEERS and women (E. Seymour, Talking about Leaving)

▸ Reversing trend of civic dis-engagement among college students as measured by basic knowledge of US government and participation in electoral processes (Astin, The American Freshman: 1966-1985)
SENCER GREW FROM LIBERAL EDUCATION PREMISES (AAC&U AND AAAS)

REPORTS INFORMING DEVELOPMENT OF SENCER (1990 AND 1996)

https://www.aaas.org/sites/default/files/the_liberal_art_of_science.pdf

https://eric.ed.gov/?id=ED418635
Human survival and the quality of life depend on liberally educated citizens who are able to make informed assessments of the opportunities and risks inherent in the scientific enterprise. Yet there is every indication that present levels of scientific understanding, even among those who are otherwise well educated, are inadequate for life in the 21st century. In spite of the importance of science and the ubiquity of its applications, science has not been integrated adequately into the totality of human experience.

Therefore, it is the central premise of this report that science must be taught as one of the liberal arts, which it unquestionably is.
WHAT IS SENCER?
USING CIVIC CHALLENGES OF PARTICULAR RELEVANCE TO STUDENTS TO DRIVE STUDENT ENGAGEMENT & PERSISTENCE IN STEM:

SENCER
Established in 2001 at the Association of American Colleges and Universities with funding from the National Science Foundation, SENCER is a curricular improvement and faculty development program that has reached over 7000 educators at more than 500 institutions. NSF funded research has identified SENCER as a “community of transformation” in STEM reform. (Kezar, 2015)
NSF RESEARCH HAS DESIGNATED SENCER

A COMMUNITY OF TRANSFORMATION IN STEM

COMMUNITIES OF TRANSFORMATION AND THEIR WORK: SCALING STEM REFORM

ADRIANNA KEZAR
SEAN GEHRKE
PUBLIX CENTER FOR HIGHER EDUCATION
ROSSIER SCHOOL OF EDUCATION
UNIVERSITY OF SOUTHERN CALIFORNIA
SENCER is a curricular improvement initiative that was developed to do three things:

1. **Engage** underrepresented and “science averse” students in science by teaching through issues of immediate relevance to them.

2. **Improve** understanding and retention of science concepts by grounding them in real-world contexts.

3. **Build** civic confidence and capacity in students as evidence-based problem solvers and agents of change.
SENCER approaches invite students to put scientific knowledge and the scientific method to immediate use on matters of pressing interest to them.

SENCER courses explores the power of science to solve great problems, but also its limits, by recognizing the complex political social, cultural, and economic contexts in which science is practiced.

SENCER regards learning as practical and engaged from the start, as opposed to education models that view the mind as a kind of “storage shed” where abstract knowledge may be secreted for some unspecified potential use.
2001-2015 THE PRIMARY VEHICLE FOR DISSEMINATING THE STRATEGY WERE “MODEL” COURSES THAT TAUGHT STEM DISCIPLINARY CONTENT THROUGH REAL-WORLD, PRESSING, CIVIC CHALLENGES AND INTENSIVE 5-DAY FACULTY-DEVELOPMENT INSTITUTES FOLLOWED BY IMPLEMENTATION SUPPORT AND MENTORING
SENCER evolved from the redesign of a single course at Rutgers University in the 1990s, *Biomedical Issues of HIV/AIDS* (formerly Bio 172) that taught most of the conventional content of introductory biology through a focus on HIV disease (which was a global crisis in this period). Using a contemporary problem to organize the disciplinary content helped students learn and retain complex biological concepts while deepening their engagement with, and understanding of, an urgent public health challenge.
A gen-bio course that typically drew 150 students drew 400 in the first iteration, and 600 in the next. Clearly students were very interested the problem and more willing to study the biology behind it when it was contextualised in a broader social/cultural context. The NSF saw the potential of extending this approach to teaching STEM content to other disciplines and other unsolved civic challenges.
Change the focus of STEM courses from a sequence of abstract disciplinary concepts to an immediate, relevant, and unscripted problem that demands STEM knowledge to solve. Some Examples:

- General Biology becomes “Biomedical Issues of HIV-AIDS,”
- Cellular and Molecular Biology becomes “Cancer,”
- Gen Chem becomes “Exposure to Toxic Chemicals,”
- Environmental Bio becomes “Ecosystems of Southwest Florida,” or “Pollinators and Sustainability.”
- Upper division Math becomes “Differential Equations in Real-World Contexts (Modeling)”
HOW DOES SENCER RELATE TO HIGH IMPACT PEDAGOGICAL PRACTICES?

CHANGING THE CONTENT MEANS CHANGING THE PEDAGOGY

- To effectively connect the STEM content to real-world problems instructors inevitably drew on active learning and engaged pedagogies—particularly undergraduate research, community-based learning, and collaborative/team based assignments. ALL HIP’s have been used in SENCER model courses.
TODAY

23 YEARS LATER....

• SENCER continues as new generations of faculty in all disciplines engage students in rigorous STEM learning through complex civic problems of deep relevance to their students:

• CLIMATE SCIENCE!
• COVID AND EMERGING DISEASES
• THE MATHEMATICS AND INFORMATION TECHNOLOGY OF REDLINING AND GERRYMANDERING
• FOOD SECURITY
• WATER QUALITY AND ACCESS
• GREEN CHEMISTRY
• ECOSYSTEMS AND SUSTAINABILITY
• ETC...
QUESTIONS FOR DISCUSSION

▸ WHY IS SCIENCE LEARNING CRITICALLY IMPORTANT IN A DEMOCRATIC SOCIETY?

▸ WHAT DO YOUR STUDENTS THINK ARE THE MOST PRESSING PUBLIC CHALLENGES FACING OUR LOCAL AND GLOBAL COMMUNITIES?

▸ HOW CAN STEM EDUCATION AND EDUCATORS EMPOWER OUR STUDENTS AS CIVIC AGENTS WHO CAN ENGAGE WITH AND ADDRESS THESE CHALLENGES?
Impact of Experiment-Centric Pedagogy (ECP) in relation with STEM Undergraduate’s Critical Thinking, Self-Efficacy, and Motivation.

Dr. Oludare Owolabi, PE, MCHIT, REG Engr, COREN
Director, Sustainable Infrastructure Development, Smart Innovation and Resilient Engineering Research Lab
Department of Civil Engineering
Morgan State University
<table>
<thead>
<tr>
<th>Agenda:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Experiment-Centric Pedagogy</td>
</tr>
<tr>
<td>Core Research Questions</td>
</tr>
<tr>
<td>Theoretical Framework</td>
</tr>
<tr>
<td>ECP Module Design</td>
</tr>
<tr>
<td>Experiments and Tools</td>
</tr>
<tr>
<td>Data Collection Approach</td>
</tr>
<tr>
<td>Results</td>
</tr>
</tbody>
</table>
Introduction

- There is an urgent need to increase minority representation in the STEM field.
- Motivation, self-efficacy, and critical thinking development can aid increase representation of minority and underserved population.
- Active learning approaches has been reported to increase student learning and engagement in engineering courses.
- One such intervention strategies is a high impact, evidenced based experiential pedagogy called experiment-centric pedagogy (ECP) that has been successful in promoting motivation and enhancing achievement among African Americans especially in electrical engineering.
Experiment-Centric Pedagogy

The experiment-centric pedagogy (ECP) is an alternative approach that allows students to learn at their own pace and in their preferred environment.

A teaching technique that utilizes hands-on-activities through an inexpensive, safe, and portable electronic instrumentation system that can be used in classrooms and student laboratories to teach STEM concepts.

The true integration of technology with curriculum development and allows students to learn through hands-on practices, experiential learning, and group work.
ECP – The first Attempt

• Initially, the goal of the ECP was to increase the number of highly qualified and prepared African American engineers, and all students, to have a better understanding of technology and its role in STEM education and the policy associated with it.

• Adopted across 13 HBCU’s for just the electrical and electronics engineering undergraduates

• Development of a mobile learning studio that learners could use to actively learning EE concepts.
ECP Was Successfully Utilized in Electrical Engineering Curricula at 13 HBCUs (Connor et al 2017)

01 Yielded more positive outcomes like increased knowledge of instructional practices and associated outcomes

02 Positive effect on pre-requisites to learning (attitude, motivation, interest in learning engineering)

03 Positive effect on immediate effective outcomes of learning (impact on recall, use for in-course problem solving, and module specific knowledge)

04 Potential impact on long-term outcomes (transfer of skills to new content, new settings, and retention of problem-solving skills)
A Multidisciplinary Approach

• Post the initial implementation across 13 HBCUs, ECP was supported by National Science Foundation to be implemented at Morgan State University across multiple STEM disciplines.

• This include Civil Engineering, Electrical and Electronics Engineering, Industrial Engineering, Transportation Engineering, Computer Science, Biology, Physics, and Chemistry.
1. Does the Experimental Centric Pedagogy (ECP) enhance student learning, motivation and curiosity beyond the field of electrical engineering?
2. How do the different STEM fields integrate and customize the Experimental Centric Pedagogy to meet the learning objectives of coursework within their disciplines?
3. Does an Experimental Centric Pedagogy increase the engagement of undergraduate students in their STEM learning and lead to measurable and lasting learning gains?
4. How does the implementation of the Experimental Centric Pedagogy impact students’ learning in the various STEM fields?
The Four Learning Process

ECP

- Experiment
- Math & Science Information
- System Model
- Simulation

The Four Learning Process

Fundamentals of ECP
Theoretical Framework

- The 5E model implements constructivist theory in a structured way for teachers.
- The model consists of five phases: Engage, Explore, Explain, Elaborate, and Evaluate.
- It implies that humans derive knowledge and meaning from their experiences.
- Students can reconcile new information with prior concepts by comprehending and reflecting on activities.
The ECP Module Instructional Design

1. Information about the module
 a. Module title
 b. Placement within the curriculum
 c. Primary/Secondary audience
 d. Standards
 e. Prerequisites
 f. Context

2. Purpose of the module
 a. Questions
 b. Module objectives

3. Instructional Process
 a. Materials needed
 b. Procedures
 c. Formative assessment
 d. Summative assessment
 e. Differential Instruction
 f. Alternate Plans

4. Reflection
 a. Reflection
Experiment-Centric Pedagogy Value Proposition

ECP is a valuable STEM teaching approach, because using electronic instrumentation to make scientific measurements is common in all STEM disciplines.
ADALM2000
Instrument
Experiments Conducted and Tools Utilized

Specific Heat of Solids (Industrial Engineering)

Heat Engines (Industrial Engineering)

Sound and Noise Monitoring (Civil and Transportation Engineering)

Immobile Sensor

Mobile Sensor

(a) Apple (iPhone) Apps

(b) Android Apps
Industrial Engineering: Specific Heat of Solid
Experiments Conducted and Tools Utilized

Biology: Set up of Photoplethysmography (Heart rate measurement)

Beam Deflection (Civil Engineering)
1) Experiment of sound meter = Gravity Analog Sound Sensor (DFR0034)

Transportation: Sound Experiment
Transportation

- TRSS 415 TRSS 405
- Reaction Time, Traffic Count, Traffic Control and Devices
Experiments Conducted and Tools Utilized

Heart Rate Experiment (Biology)

Soil Moisture Experiment
(Civil Engineering)

ADALM1000
(ADALM1K)
Active Learning Module
(Computer Science)
A steady decline in the observed light level is observed as the leaves grow and shadow the solar cell. The data scatter is greater for the LED bulb because of its larger ripple (flicker). The jump in the observed light level for the LED occurred when some of the plants fell over.
Physics Experiments

Series Connection of Resistors

Parallel Connection of Resistors
Number of Students Impacted From Spring 2020 to Summer 2022

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Number of Courses</th>
<th>Number of faculty</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>4</td>
<td>3</td>
<td>863</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>4</td>
<td>2</td>
<td>319</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>5</td>
<td>153</td>
</tr>
<tr>
<td>Computer Science</td>
<td>1</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>2</td>
<td>1</td>
<td>193</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
<td>2</td>
<td>369</td>
</tr>
<tr>
<td>Transportation</td>
<td>3</td>
<td>3</td>
<td>69</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>17</td>
<td>2003</td>
</tr>
</tbody>
</table>
Research Design

A pre-post test design method.

Other preliminary actions
1. Research assistant training (Graduate students)
2. Class / Course Selection
3. Module Selection
4. Curriculum Development
Data Collection

• The Motivated Learning Strategies Questionnaire (MLSQ) was adopted for the collecting learners’ self-reported motivation and learning strategies.

• The Instrument has 8 subscales that are used for collating their intrinsic and extrinsic motivation, task value, test anxiety, peer learning and collaboration, expectancy components, metacognition, and critical thinking skills adapted before and after the implementation of ECP.
The Classroom Observation Protocol for Undergraduate STEM (COPUS)

Faculty Effectiveness Rubrics virtual and face to face
Instructors and the teaching practices they employ play a critical role in improving student learning in college STEM courses.

There is increasing interest in collecting information on the range and frequency of teaching practices at department-wide and institution-wide scales.

To facilitate this process, a new classroom observation protocol known as the Classroom Observation Protocol for Undergraduate STEM or COPUS was developed by Smith et al (2013).

The protocol allows STEM faculty, after a short 1.5-hour training period, to reliably characterize how faculty and students are spending their time in the classroom.

The observation data can be used to guide individual and institutional change.
1. Students Doing

| L | nd | ID | ID1 | ID2 | ID3 | ID4 | ID5 | ID6 | ID7 | ID8 | ID9 | ID10 | ID11 | ID12 | ID13 | ID14 | ID15 | ID16 | ID17 | ID18 | ID19 | ID20 | ID21 | ID22 | ID23 | ID24 | ID25 | ID26 | ID27 | ID28 | ID29 | ID30 | ID31 | ID32 | ID33 | ID34 | ID35 | ID36 | ID37 | ID38 | ID39 | ID40 | ID41 | ID42 | ID43 | ID44 | ID45 | ID46 | ID47 | ID48 | ID49 | ID50 |

2. Instructor Doing

| Lec | Week |

- Simultaneous observation of the classroom dynamics when a module in a course is taught with ECP.
- Reveals several actions carried out by learners and instructors.
Descriptions of the COPUS Student and Instructor Codes (Smith et al 2013)

Students are Doing

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Listening to instructor/taking notes, etc.</td>
</tr>
<tr>
<td>AnQ</td>
<td>Student answering a question posed by the instructor with the rest of the class listening</td>
</tr>
<tr>
<td>SQ</td>
<td>Student asks a question</td>
</tr>
<tr>
<td>WC</td>
<td>Engaged in whole class discussion by offering explanations, opinion, judgment, etc</td>
</tr>
<tr>
<td>Ind</td>
<td>Individual thinking/problem solving.</td>
</tr>
<tr>
<td>CG</td>
<td>Discuss clicker question in groups of 2 or more students</td>
</tr>
<tr>
<td>WG</td>
<td>Working in groups on worksheet activity</td>
</tr>
<tr>
<td>OG</td>
<td>Other assigned group activity, such as responding to instructor question</td>
</tr>
<tr>
<td>Prd</td>
<td>Making a prediction about the outcome of demo or experiment</td>
</tr>
<tr>
<td>SP</td>
<td>Presentation by student(s)</td>
</tr>
<tr>
<td>TQ</td>
<td>Test or quiz</td>
</tr>
<tr>
<td>W</td>
<td>Waiting</td>
</tr>
<tr>
<td>O</td>
<td>Other – explain in comments</td>
</tr>
</tbody>
</table>

Instructor is Doing

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lec</td>
<td>Lecturing</td>
</tr>
<tr>
<td>RTW</td>
<td>Real-time writing on board, doc. projector, etc.</td>
</tr>
<tr>
<td>Fup</td>
<td>Follow-up/feedback on clicker question or activity to entire class</td>
</tr>
<tr>
<td>PQ</td>
<td>Posing non-clicker question to students (non-rhetorical)</td>
</tr>
<tr>
<td>CQ</td>
<td>Asking a clicker question</td>
</tr>
<tr>
<td>AnQ</td>
<td>Listening to and answering student questions with entire class listening</td>
</tr>
<tr>
<td>MG</td>
<td>Moving through class guiding ongoing student work during active learning task</td>
</tr>
<tr>
<td>1o1</td>
<td>One-on-one extended discussion with one or a few individuals</td>
</tr>
<tr>
<td>D/V</td>
<td>Showing or conducting a demo, experiment, simulation, video, or animation</td>
</tr>
<tr>
<td>Adm</td>
<td>Administration (assign homework, return tests, etc.)</td>
</tr>
<tr>
<td>W</td>
<td>Waiting when there is an opportunity for an instructor</td>
</tr>
<tr>
<td>O</td>
<td>Other – explain in comments</td>
</tr>
</tbody>
</table>
Virtual and Onsite learning opportunities with ECP
<table>
<thead>
<tr>
<th>Disciplines (2017 Majors - BS)</th>
<th>Concepts</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering (414)</td>
<td>Vibration of Civil Engineering Systems, Bridge Vibrations, Bending of Cantilever, 4. Stresses and Strains</td>
<td>CEGR 212 Mechanics of Materials and Laboratory, 2. CEGR 324 Structural Analysis and Laboratory</td>
</tr>
<tr>
<td>Physics and Engineering Physics (12)</td>
<td>Sensor Motion, Acoustic, Heat, Kinematics, Displacements</td>
<td>PHYS 101 Introduction to Physics, PHYS 111 Introduction to Physics (Honors), PHYS 306 Solid State and Digital Electronics, PHYS 311 Acoustic and You, PHYS 412 Laboratory Use of Microcomputers</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Electrolysis, Forensic, Analytic Chemistry, Optics, Spectroscopy Chemical Properties and Atomic Theory.</td>
<td>CHEM 110/110L General Chemistry for Engineering Students,</td>
</tr>
<tr>
<td>Biology (369)</td>
<td>Bio cells, Oxygen Cells, Dissolved Oxygen, Water Level, Ecology, Aquatic Habitat/Ecology</td>
<td>BIO 101/102/103 Introductory Biology</td>
</tr>
<tr>
<td>Transportation Systems (79)</td>
<td>Reaction Time, Crash Analysis, Speed Measurements, Simulations of Cars, Traffic Control and Devises Traffic Counts</td>
<td>TRSS 414 Traffic Engineering, TRSS 415 Highway Engineering, TRSS 417 Intelligent Transportation System</td>
</tr>
</tbody>
</table>
Implementation
Photos
Development and Implementation of Experiment Centric Active Learning Experiments/Activities in Transportation During the Pandemic and Beyond, Owolabi et al (TRB 2022)
EXPERIMENTS

- *Noise Measurements Experiment*

 When: Fall 2020
 Where: A highway engineering class
 Equipment Used: ADALM1000 (M1K), analog sound sensor, three jump wires, and a laptop or personal computer.

![FIGURE 5 - The Noise Experiment Set Up](image-url)
EXPERIMENTS

Noise Measurements Experiment

- To address the effects of noise pollution, noise barriers have been created to absorb and alleviate noise leaks.
- Sound data was collected both indoor and outdoor.
- The voltage reading from ADALM1000 was converted to decibel by 11 using Equation 1.

\[
\text{Gain (dB)} = 20 \cdot \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right) \quad \text{(1)}
\]

- \(V_{\text{out}} \) = output voltage
- \(V_{\text{in}} \) = input voltage = 5 volts

FIGURE 6 - The effect of volume, speed and vehicle type on Noise
Experiments

Moisture Content Determination

When: Fall 2021
Equipment Used: Arduino UNO

- The soil moisture sensor user-supplied power of 3 mA.
- Moisture content data is collected using Arduino UNO.
- Six prepared samples of varying soil moisture were used to calibrate the sensor.

FIGURE 7: Moisture Experiment Set Up
Impact on Motivation

<table>
<thead>
<tr>
<th>Items</th>
<th>Construct**</th>
<th>Code</th>
<th>Pre % n=15</th>
<th>Post % n=15</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>In a class like this, I prefer course material that really challenges me so I can learn new things.</td>
<td>Intrinsic Goal Orientation (IGO 1)</td>
<td>IGO 1</td>
<td>53.3</td>
<td>72.8</td>
<td>19.5</td>
</tr>
<tr>
<td>In a class like this, I prefer course material that arouses my curiosity, even if it is difficult to learn.</td>
<td>Intrinsic Goal Orientation (IGO 2)</td>
<td>IGO 2</td>
<td>66.7</td>
<td>72.8</td>
<td>6.1</td>
</tr>
<tr>
<td>The most satisfying thing for me in this course is trying to understand the content as thoroughly as possible.</td>
<td>Intrinsic Goal Orientation (IGO 3)</td>
<td>IGO3</td>
<td>93.3</td>
<td>90.9</td>
<td>-2.4</td>
</tr>
<tr>
<td>It is important for me to learn the course material in this class.</td>
<td>Task Value (TV1)</td>
<td>TV1</td>
<td>100</td>
<td>91.0</td>
<td>-9.0</td>
</tr>
<tr>
<td>I am very interested in the content area of this course.</td>
<td>Task Value (TV2)</td>
<td>TV2</td>
<td>60.0</td>
<td>72.8</td>
<td>12.8</td>
</tr>
<tr>
<td>I like the subject matter of this course.</td>
<td>Task Value (TV3)</td>
<td>TV3</td>
<td>80.0</td>
<td>91.0</td>
<td>11.0</td>
</tr>
<tr>
<td>I believe I will receive an excellent grade in this class.</td>
<td>Expectancy Component (EC1)</td>
<td>EC1</td>
<td>60.0</td>
<td>54.6</td>
<td>-5.4</td>
</tr>
<tr>
<td>I’m confident I can do an excellent job on the assignments and tests in this course.</td>
<td>Expectancy Component (EC2)</td>
<td>EC2</td>
<td>73.3</td>
<td>81.9</td>
<td>8.6</td>
</tr>
<tr>
<td>I expect to do well in this class.</td>
<td>Expectancy Component (EC3)</td>
<td>EC3</td>
<td>86.7</td>
<td>81.9</td>
<td>-4.8</td>
</tr>
<tr>
<td>I have an uneasy, upset feeling when I take an exam.</td>
<td>Test Anxiety (TA1)</td>
<td>TA1</td>
<td>86.7</td>
<td>91.0</td>
<td>4.3</td>
</tr>
<tr>
<td>I feel my heart beating fast when I take an exam.</td>
<td>Test Anxiety (TA2)</td>
<td>TA2</td>
<td>60.0</td>
<td>63.7</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Table 1 - Changes in Student Motivation Constructs: The MSLQ results for the pre- and post-tests when ECP was implemented in the Highway Engineering course in Fall 2020
<table>
<thead>
<tr>
<th>Items</th>
<th>Construct**</th>
<th>Code</th>
<th>Pre % n=15</th>
<th>Post % n=15</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>I often find myself questioning things I hear or read in this course.</td>
<td>Critical Thinking</td>
<td>CT1</td>
<td>73.3</td>
<td>72.8</td>
<td>-0.5</td>
</tr>
<tr>
<td>I try to play around with ideas of my own related to what I am learning in this course.</td>
<td>Critical Thinking</td>
<td>CT2</td>
<td>66.7</td>
<td>72.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Whenever I read or hear an assertion or conclusion in this class, I think about possible alternatives</td>
<td>Critical Thinking</td>
<td>CT3</td>
<td>66.7</td>
<td>81.9</td>
<td>15.2</td>
</tr>
<tr>
<td>When I become confused about something I'm reading for this class, I go back and try to figure it out.</td>
<td>Metacognition</td>
<td>MC1</td>
<td>93.3</td>
<td>100.0</td>
<td>6.7</td>
</tr>
<tr>
<td>If course materials are difficult to understand, I change the way I read the material.</td>
<td>Metacognition</td>
<td>MC2</td>
<td>53.3</td>
<td>81.9</td>
<td>28.6</td>
</tr>
<tr>
<td>Before I study new course material thoroughly, I often skim it to see how it is organized.</td>
<td>Metacognition</td>
<td>MC3</td>
<td>73.3</td>
<td>81.9</td>
<td>8.6</td>
</tr>
<tr>
<td>I try to think through a topic and decide what I am supposed to learn from it rather than just reading it over when studying.</td>
<td>Metacognition</td>
<td>MC3</td>
<td>86.7</td>
<td>91.0</td>
<td>4.3</td>
</tr>
<tr>
<td>When studying for this course, I often try to explain the material to a classmate or a friend</td>
<td>Peer Learning</td>
<td>PL1</td>
<td>53.3</td>
<td>81.9</td>
<td>28.6</td>
</tr>
<tr>
<td>I try to work with other students from this class to complete the course assignments.</td>
<td>Peer Learning</td>
<td>PL2</td>
<td>66.7</td>
<td>81.9</td>
<td>15.2</td>
</tr>
<tr>
<td>When studying for this course, I often set aside time to discuss the course materials with a group of students from the class.</td>
<td>Peer Learning</td>
<td>PL3</td>
<td>60.0</td>
<td>81.9</td>
<td>21.9</td>
</tr>
<tr>
<td>Items</td>
<td>Construct*</td>
<td>Code</td>
<td>Pre % n=15</td>
<td>Post % n=15</td>
<td>% Change</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>I enjoy exploring new ideas</td>
<td>Interest Epistemic Curiosity Scale</td>
<td>IEC1</td>
<td>93.3</td>
<td>100</td>
<td>6.7</td>
</tr>
<tr>
<td>I enjoy learning about subjects that are unfamiliar to me</td>
<td>Interest Epistemic Curiosity Scale</td>
<td>IEC2</td>
<td>73.3</td>
<td>81.8</td>
<td>8.5</td>
</tr>
<tr>
<td>I find it fascinating to learn new information</td>
<td>Interest Epistemic Curiosity Scale</td>
<td>IEC3</td>
<td>86.6</td>
<td>91</td>
<td>4.4</td>
</tr>
<tr>
<td>When I learn something new, I would like to find out more about it</td>
<td>Interest Epistemic Curiosity Scale</td>
<td>IEC4</td>
<td>73.4</td>
<td>100</td>
<td>26.6</td>
</tr>
<tr>
<td>I enjoy discussing abstract concepts</td>
<td>Interest Epistemic Curiosity Scale</td>
<td>IEC5</td>
<td>66.7</td>
<td>72.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Difficult conceptual problems can keep me awake all night thinking about solutions</td>
<td>Deprivation Epistemic Curiosity Scale</td>
<td>DECS1</td>
<td>46.7</td>
<td>90.9</td>
<td>44.2</td>
</tr>
<tr>
<td>I can spend hours on a single problem because I just can't rest without knowing the answer</td>
<td>Deprivation Epistemic Curiosity Scale</td>
<td>DECS2</td>
<td>66.7</td>
<td>72.7</td>
<td>6</td>
</tr>
<tr>
<td>I feel frustrated if I can't figure out the solution to a problem, so I work even harder to solve it</td>
<td>Deprivation Epistemic Curiosity Scale</td>
<td>DECS3</td>
<td>86.7</td>
<td>81.8</td>
<td>-4.9</td>
</tr>
<tr>
<td>I brood for a long time in an attempt to solve some fundamental problems</td>
<td>Deprivation Epistemic Curiosity Scale</td>
<td>DECS4</td>
<td>66.7</td>
<td>72.8</td>
<td>6.1</td>
</tr>
<tr>
<td>I work like a fiend at problems that I feel must be solved</td>
<td>Deprivation Epistemic Curiosity Scale</td>
<td>DECS5</td>
<td>60</td>
<td>81.9</td>
<td>21.9</td>
</tr>
</tbody>
</table>
Overall, the most consistent pre to post changes in participants' perspective occurred in sub-areas of:

• Metacognition:
 • “If course materials are difficult to understand, I change the way I read the material” →
 • % change = +28.6%
• Peer Learning Collaboration:
 • “When studying for this course, I often try to explain the materials to a classmate or a friend” →
 • % change = +28.6%
Descriptive analysis of Pre- and Post-test results of Fall 2020 and Spring 2021 (a)

<table>
<thead>
<tr>
<th></th>
<th>Intrinsic goal* orientation</th>
<th>Task Value*</th>
<th>Expectancy* Component</th>
<th>Test Anxiety*</th>
<th>Critical Thinking*</th>
<th>Metacognition*</th>
<th>Peer Learning/ Collaboration*</th>
<th>Interest **Epistemic Curiosity Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>FALL 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRST PrN=15 PrN=11</td>
<td>Mean</td>
<td>5.289</td>
<td>5.528</td>
<td>5.667</td>
<td>5.917</td>
<td>5.222</td>
<td>5.500</td>
<td>5.300</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.506</td>
<td>0.039</td>
<td>0.136</td>
<td>0.245</td>
<td>0.250</td>
<td>0.068</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>+0.239</td>
<td>+0.250</td>
<td>+0.278</td>
<td>+0.450</td>
<td>+0.367</td>
<td>+0.596</td>
<td>+0.888</td>
</tr>
<tr>
<td></td>
<td>P-Val</td>
<td>0.573</td>
<td>0.505</td>
<td>0.419</td>
<td>0.429</td>
<td>0.070</td>
<td>0.046</td>
<td>0.013</td>
</tr>
<tr>
<td>ALL PrN=29 PrN=169</td>
<td>Mean</td>
<td>5.387</td>
<td>5.283</td>
<td>5.770</td>
<td>5.459</td>
<td>5.676</td>
<td>5.315</td>
<td>5.581</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.258</td>
<td>0.058</td>
<td>0.292</td>
<td>0.177</td>
<td>0.135</td>
<td>0.085</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>-0.104</td>
<td>-0.311</td>
<td>-0.361</td>
<td>-0.257</td>
<td>-0.095</td>
<td>-0.006</td>
<td>0.557</td>
</tr>
<tr>
<td></td>
<td>P-Val</td>
<td>0.630</td>
<td>0.281</td>
<td>0.042</td>
<td>0.163</td>
<td>0.059</td>
<td>0.954</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.290</td>
<td>1.800</td>
<td>1.230</td>
<td>0.880</td>
<td>1.380</td>
<td>0.760</td>
<td>2.120</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>+0.680</td>
<td>+3.110</td>
<td>+3.950</td>
<td>-1.740</td>
<td>-1.100</td>
<td>-1.840</td>
<td>+0.310</td>
</tr>
<tr>
<td></td>
<td>P-Val</td>
<td>0.081</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>1.460</td>
<td>1.630</td>
<td>1.500</td>
<td>0.800</td>
<td>1.600</td>
<td>1.390</td>
<td>1.850</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>+0.550</td>
<td>+3.040</td>
<td>-2.940</td>
<td>-1.600</td>
<td>-1.400</td>
<td>-2.140</td>
<td>+0.350</td>
</tr>
<tr>
<td></td>
<td>P-Val</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- *1-7 Likert Scale
- ** 1-4 Likert Scale
- PrN: Sample size for Pre-test
- PrS: Sample Size for Post-test
- SD: Standard Deviation
- Δ: Difference Between Pre- and Post-Test
- P-Val T-test result <0.05 is significant
Descriptive analysis of Pre- and Post-test results of Fall 2021 and Combination of Fall 2020 to Fall 2021 (b)

<table>
<thead>
<tr>
<th></th>
<th>Intrinsic goal* orientation</th>
<th>Task Value*</th>
<th>Expectancy* Component</th>
<th>Test Anxiety*</th>
<th>Critical Thinking*</th>
<th>Metacognition*</th>
<th>Peer Learning/ Collaboration*</th>
<th>Interest ** Epistemic Curiosity Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>FALL 2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrN=40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.941</td>
<td>1.516</td>
<td>0.935</td>
<td>0.771</td>
<td>2.039</td>
<td>0.749</td>
<td>1.339</td>
<td>0.662</td>
</tr>
<tr>
<td>Δ</td>
<td>+1.583</td>
<td>-0.302</td>
<td>-1.009</td>
<td>-0.781</td>
<td>-0.218</td>
<td>-2.080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Val</td>
<td>0.609</td>
<td>0.0615</td>
<td>0.020</td>
<td>0.009</td>
<td>0.404</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrN=315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.837</td>
<td>2.324</td>
<td>1.561</td>
<td>2.423</td>
<td>2.597</td>
<td>2.339</td>
<td>3.099</td>
<td>2.445</td>
</tr>
<tr>
<td>SD</td>
<td>1.213</td>
<td>1.263</td>
<td>0.422</td>
<td>1.348</td>
<td>1.700</td>
<td>0.936</td>
<td>1.251</td>
<td>0.929</td>
</tr>
<tr>
<td>Δ</td>
<td>-0.763</td>
<td>-0.258</td>
<td>-0.654</td>
<td>-0.262</td>
<td>-0.871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Val</td>
<td>0.000</td>
<td>0.016</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALL 2020, Spring 2021 & Fall 2021 Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrN=89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>1.246</td>
<td>1.118</td>
<td>1.083</td>
<td>0.596</td>
<td>1.380</td>
<td>0.503</td>
<td>2.079</td>
<td>0.987</td>
</tr>
<tr>
<td>Δ</td>
<td>-0.151</td>
<td>+1.020</td>
<td>-1.836</td>
<td>-0.767</td>
<td>-0.504</td>
<td>-0.415</td>
<td>-0.294</td>
<td>-0.648</td>
</tr>
<tr>
<td>P-Val</td>
<td>0.421</td>
<td>0.189</td>
<td>0.209</td>
<td>0.150</td>
<td>0.027</td>
<td>0.018</td>
<td>0.160</td>
<td>0.0375</td>
</tr>
</tbody>
</table>

- *1-7 Likert Scale
- **1-4 Likert Scale
- PrN: Sample size for Pre-test
- PrS: Sample Size for Post-test
- SD: Standard Deviation
- Δ: Difference Between Pre-and Post-Test
- P-Val T-test result <0.05 is significant
RESULTS AND DISCUSSION

The results clearly show that there are improvement in students’ motivation levels in six constructs in Fall 2020:

- Intrinsic goal orientation (post (5.528) > pre (5.289))
- Task value (post (5.917) > pre (5.667))
- Expectancy Component (post (5.500) > (5.222))
- Critical Thinking (post (5.500) > pre (5.133))
- Metacognition (post (5.979) > pre (5.383))
- Peer Learning (post (5.444) > pre (4.556))
- Interest Epistemic Curiosity Scale (post (2.327) > pre (1.787)).
Highway Engineering
The lab session was very interactive, and it was clearly observed that the students were effectively engaged, they were excited about the experiment as well as highly inquisitive about the procedures.

COPUS results reveal that ECP is highly engaging as students spent 84% of the class time on hands on activities, while simultaneously 92% of the class time was spent by students asking questions.
Outcome Assessment

Fall 2022 TRSS 301 Outcome Assessment

- Describes the hypothesis being tested.
- Formulates adequate simulation or experiment and hypothesis (synthesis).
- Accepts reasonable variance between numerical or experimental results and predictions of hypothesis (analysis).
- Understands the functions and limitations of the computer or laboratory tool/equipment used (comprehension).
- Uses laboratory tool/equipment correctly (comprehension).
- Organizes experimental or simulation data mathematically or graphically to interpret it.
- Recognizes the relation in precision between input and output data.
- Determines sources of error in error analysis on results.

Fall 2022 CEGR 202 Outcome Assessment

- Describes the hypothesis being tested.
- Formulates adequate simulation or experiment and hypothesis (synthesis).
- Accepts reasonable variance between numerical or experimental results and predictions of hypothesis (analysis).
- Understands the functions and limitations of the computer or laboratory tool/equipment used (comprehension).
- Uses laboratory tool/equipment correctly (comprehension).
- Organizes experimental or simulation data mathematically or graphically to interpret it.
- Recognizes the relation in precision between input and output data.
- Determines sources of error in error analysis on results.

Target: Red
Exemplary: Green
Satisfactory: Blue
Developing: Yellow
Unsatisfactory: Red
Learners’ Feedback over the years
Conclusion/ Future Directions

• ECP has been demonstrated to improve student’s motivation and achievement of the stated learning objectives of transportation infrastructure systems concepts.

• ECP facilitates students’ demonstration of better mastery of the expected competencies in the modules.

• ECP will be implemented in more STEM fields.
Acknowledgments

- This material is based upon work supported by the National Science Foundation under Grant No.1915614. The opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Thanks for Listening

Q and A

Contact:
Dr. Oludare Owolabi
oludare.Owolabi@morgan.edu
Access Publications

https://tinyurl.com/ImpactofECP
Discussion Questions

• How can hands-on pedagogy like ECP be adapted and optimized to cater to the changing landscape of post-COVID education, including online, hybrid, and in-person learning environments?

• How can STEM educators use hands-on pedagogy in developing workforce pipeline from minority and underrepresented groups.

• For the sake of widespread adoption, how do cultural differences affect the implementation and effectiveness of experimental pedagogy in different regions, and what can we learn from international experiences?
High-Impact Pedagogies that Motivate and Retain Students in STEM

Dr. Eliza J. Reilly
Dr. Oludare Owolabi

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE-1937267. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.
Thank you for attending!

Slides and recording will be available in the coming days.

We value your feedback, please take a few minutes to complete the survey.
Course-based Undergraduate Research Experiences (CUREs): Incorporating STEM Research into the Curriculum

October 17, 2023 | 2:00pm-3:30pm ET

Dr. Emma Goodwin
Dr. Oliver Hyman

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. DUE- 1937267. Any opinions, findings, interpretations, conclusions or recommendations expressed in this material are those of its authors and do not represent the views of the AAAS Board of Directors, the Council of AAAS, AAAS’ membership or the National Science Foundation.